Global

‡ In these countries please contact our distributor

Clinical Evidence

Clinical Evidence Banner

Evidence

The evidence is in...

 

TRIGEN INTERTAN Claims v2 thumbnail

TRIGEN INTERTAN Claims Brochure

The benefits of the TRIGEN INTERTAN system – lower risk of implant failure and non-union, reduced postoperative pain, faster time to fracture union, and a proven high return to pre-fracture status – can help you achieve better outcomes more efficiently.

 

 


 

TRIGEN INTERTAN Bone and Joint outcome research paper

Bone and Joint Outcome Whitepaper

A systematic literature review and meta-analysis of the literaturefound that, compared to those treated with comparator devices theTRIGEN INTERTAN nail results in:

• A 69% reduction in implant failures (p=0.001)

• A 73% reduction in non-unions (p=0.01)

• A 54% reduction in patients complaining of hip andthigh pain (p=0.003)

• Improvement in health related quality of life,as measured by the SF-36 (physical health) score,in a single study (p=0.002)

 

 


 

 

TAYLOR SPATIAL FRAME is a computer-assisted external circular fixator with 20 years of clinical data.

TSF Evidence thumbnail 

Download the brochure

INTERTAN

Your patients can enjoy life after hip fracture

The evidence is in!  Based on data from more than two-dozen published studies, the TRIGEN INTERTAN Intertrochanteric Antegrade Nail allows femur (hip) fracture patients to experience:

  • Lower risk of implant failure and non-union6,7,8,9,10,11,12,13,14,15
  • Reduced postoperative pain9,10,11,13,14,15
  • Faster time to fracture union9,11,12,13,19,23,24,25,26,27,28,29
  • Proven high return to pre-fracture status6,13,19,23

 

Features and Benefits

  • Maintain compression and eliminate Z-effect
  • Intertrochanteric rotational stability
  • Control rotation during reduction
  • Eliminate medial migration
  • Prevent periprosthetic fractures

INTERTAN claims image - How INTERTAN works

Challenge:  Post-Operative Complications

Solution:  Lower risk of implant failure and non-union6,7,8,9,10,11,12,13,14,15

TRIGEN INTERTAN Solution:  lower risk of implant failure and non-union

Challenge:  Pain management

Solution:  Reduced postoperative pain9,10,11,13,14,15

TRIGEN INTERTAN Solution:  reduced postoperative pain

Challenge:  Delayed healing

Solution:  Faster time to fracture union9,11,12,13,19,23,24,25,26,27,28,29

TRIGEN INTERTAN Solution:  faster time to fracture union

Challenge:  Poor functional outcomes

Solution:  Proven high return to pre-fracture status6,13,19,23

TRIGEN INTERTAN Solution:  proven high return to pre-fracture status

 

References:
1.American Academy of Orthopaedic Surgeons. Hip fractures in seniors: a call for health system reform. Position Statement 1144. Rosemont, IL: 1999. 
2. Mundi S et al. Similar mortality rates in hip fracture patients over the past 31 years: A systematic review of RCTs. Acta Orthopaedica 2014; 85(1): 54-59. 
3. Bentler SE, Liu L, Obrizan M, Cook EA, Wright KB, Geweke JF, et al. The aftermath of hip fracture: discharge placement, functional status change, and mortality. Am. J Epidemiol. 2009 Nov 15;170(10):1290-9. doi: 10.1093/aje/kwp266. 
4. Brujin K, Hartog D, Tuinebreijer W, Roukema G. Reliability of Predictors for Screw Cutout in Intertrochanteric Hip Fractures. J Bone Joint Surg Am. 2012;94:1266-1272. 
5. Hoffmann S, Paetzold R, Stephan D, Püschel K, Buehren V, Augat P. Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures. J Orthop Trauma. 2013;27(9):483-490. 
6. Berger-Groch J, Rupprecht M, Schoepper S, Schroeder M, Rueger JM, Hoffmann M. Five-Year Outcome Analysis of Intertrochanteric Femur Fractures: A Prospective Randomized Trial Comparing a 2-Screw and a Single-Screw Cephalomedullary Nail. J Orthop Trauma. 2016;30:483-488. 
7. Matre K, Vinje T, Havelin LI, et al. TRIGEN INTERTAN intramedullary nail versus sliding hip screw:a prospective, randomized multicenter study on pain, function, and complications in 684 patients with an intertrochanteric or subtrochanteric fracture and one year of follow-up. J Bone Joint Surg Am. 2013;95:200-208. 
8. Sanders D, Bryant D, Tieszer C, et al. A Multicenter Randomized Control Trial Comparing a Novel Intramedullary Device (InterTAN) Versus Conventional Treatment (Sliding Hip Screw) of Geriatric Hip Fractures. J Orthop Trauma. 2017;31:1-8. 
9. Seyhan M, Turkmen I, Unay K, Ozkut AT. Do PFNA devices and Intertan nails both have the same effects in the treatment of trochanteric fractures? A prospective clinical study. J Orthop Sci. 2015;20:1053-1061. 
10. Su H, Sun K, Wang X. A randomized prospective comparison of Intertan and Gamma3 for treating unstable intertrochanteric fractures. Int J Clin Exp Med. 2016;9:8640-8647. 
11. Zhang S, Zhang K, Jia Y, Yu B, Feng W. InterTan nail versus Proximal Femoral Nail Antirotation-Asia in the treatment of unstable trochanteric fractures. Orthopedics. 2013;36:e288-294 
12. Wang Q, Yang X, He HZ, Dong LJ, Huang DG. Comparative study of InterTAN and Dynamic Hip Screw in treatment of femoral intertrochanteric injury and wound. Int J Clin Exp Med. 2014;7:5578-5582. 
13. Wu Y, Watson JT, Kuldjanov D, Jackman J. Rotationally stable fixation for intertrochanteric hip fractures: the Intertan experience, surgical technique, and outcomes. Techniques in Ortho. 2014;29;3:120-132 
14. Yu W, Zhang X, Zhu X, Hu J, Liu Y. A retrospective analysis of the InterTan nail and proximal femoral nail anti-rotation-Asia in the treatment of unstable intertrochanteric femur fractures in the elderly. J Orthop Surg Res. 2016;11:10. 
15. Zehir S, Sahin E, Zehir R. Comparison of clinical outcomes with three different intramedullary nailing devices in the treatment of unstable trochanteric fractures. Ulus Travma Acil Cerrahi Derg, 2015;21(6:469-476. 
16. Leo N, Dunbar C, Ridgway J, Horner A. The TRIGEN INTERTAN Intertrochanteric Antegrade Nail: A Systematic Literature Review and Meta-analysis of Clinical Outcomes Compared to Standard of Care in the Treatment of Intertrochanteric Hip Fractures. Bone&Joint Outcome. 2017:4(1):1-20. Lit no: 10205 V1 07/17.
17. Serrano-Riera R, Blair JA, Downes K, Sanders R. Cephalo-medullary nail fixation of intertrochanteric fractures: are two proximal screws better than one? Abstract presented at: Orthopaedic Trauma Association Annual Meeting; October 15-18, 2014; Tampa, FL, USA. 
18. Santoni B, Nayak A, Cooper S, et al. Comparison of Femoral Head Rotation and Varus Collapse Between a Single Lag Screw and Integrated Dual Screw Intertrochanteric Hip Fracture Fixation Device Using a Cadaveric Hemi-Pelvis Biomechanical Model. J Orthop Trauma. 2016;30:164-169. 
19. Ruecker AH, Rupprecht M, Gruber M, Gebauer M, Barve s using an intramedullary nail with integrated cephalocervical screws and linear compression. J Orthop Trauma 2009;23:22–30 
20. Galli M, Ciriello V, Bocchino L, Gangemi NM, Peruzzi M, Marzetti E. Clinical and functional outcomes of internal fixation with intertrochanteric antegrade nail in older patients with proximal extracapsular femoral fractures. Eur J Trauma Emerg Surg. 2013/10/17 2013:1-6. 
21. Zanzone A. Current Challenges in Pain Management in Hip Fracture Patients. J Orthop Trauma. 2016;30:S1-S5. 
22. Abou-Setta A, Beaupre L, Jones C, et al. Pain Management Interventions for Hip Fracture. Agency for Healthcare Research and Quality. 2011;Publication No. 11-EHC022-EF. 
23. Kim JW, Kim TY, Ha YC, Lee YK, Koo KH. Outcome of intertrochanteric fractures treated by intramedullary nail with two integrated lag screws: A study in Asian population. Indian J Orthop. 2015;49:436-441. 
24. Tao R, Lu Y, Xu H, Zhou ZY, Wang YH, Liu F. Internal fixation of intertrochanteric hip fractures: a clinical comparison of two implant designs. Sci World J. 2013;2013:1-8. 
25. Huang FT, Lin KC, Yang SW, Renn JH. Comparative study of the proximal femoral nail antirotation versus the reconstruction nail in the treatment of comminuted proximal femoral fracture. Orthopedics. 2012;35:e41-47. 
26. Sahin EK, Imerci A, Kinik H, Karapinar L, Canbek U, Savran A. Comparison of proximal femoral nail antirotation (PFNA) with AO dynamic condylar screws (DCS) for the treatment for unstable peritrochanteric femoral fractures. Eur J Orthop Surg Traumatol. 2014;24:347-352. 
27. Hsueh K, Fang C. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop. 2010;34:1273-1276. 
28. Liu Y, Tao R, Liu F, et al. Mid-term outcomes after intramedullary fixation of peritrochanteric femoral fractures using the new proximal femoral nail antirotation (PFNA). Injury. 2010;41:810-817. 
29. Riha D, Bartoni´cek J. Internal fixation of pertrochanteric fractures using DHS with a two-hole side-plate. Int Orthop. 2010;34:877-882. 
30. Gaston MS, Simpson AHRW. Inhibition of fracture healing.J Bone Joing Surg Br. 2007:89-B:1553-1560. 
31. Rueger J, Moore C. Shortening of the femoral neck following peritrochanteric fracture. Bone Joint Sci. 2011 May;2(5). 
32. Zlowodzki M, Brink O, Switzer J, et al. The effect of shortening and varus collapse of the femoral neck on function after fixation of intracapsular fracture of the hip. J Bone Joint Surg Br. 2008;90:1487-1494. 
33. Baldwin P, Lavender R, Sanders R, Koval K. Controversies in Intramedullary Fixation for Intertrochanteric Hip Fractures. J Orthop Trauma. 2016;30:635-641. 
34. Ollivere B, Das A, Shivji F. Hip fractures: The state of the art in 2017. The British Editorial Society of Bone & Joint Surgery. 2017;6:3.

05036 V2 0817
Disclaimer: The results of in vitro simulation testing have not been proven to predict clinical performance.
This information is intended for health care professionals only.  

TSF

A systematic review of the literature found:

  • Consolidation rates for children in all three indications were 100%.
  • Consolidation rates for adults with acute trauma, non/malunion, and deformities were 99.2%, 100%, and 100%, respectively.
  • The majority of complications in adults (64.1%) and children (68.5%) were considered grade I, and did not require operative strategies to address.

Download the brochure

Figure 4:  Consolidation rates of TAYLOR SPATIAL FRAME for three indications in adults.  

TSF 20 year whitepaper figure 4

Figure 5:  Consolidation rates of TAYLOR SPATIAL FRAME for three indications in children.  

TSF 20 year whitepaper figure 5

Figure 8:  Rate of correction goals achieved with TAYLOR SPTAIAL FRAME for deformities in adults

TSF 20 year whitepaper figure 8 adults

Figure 8:  Rate of correction goals achieved with TAYLOR SPATIAL FRAME for deformities in children

TSF 20 year whitepaper figure 8 children

References
1. Ahearn N, Oppy A, Halliday R, et al. The outcome following fixation of bicondylartibial plateau fractures. Bone Joint J. 2014;96-B:956-962.
2. Alexis F, Herzenberg JE, Nelson SC. Deformity correction in Haiti with the TaylorSpatial Frame. Orthop Clin North Am. 2015;46:9-19.
3. Al-Sayyad MJ. Taylor Spatial Frame in the treatment of pediatric and adolescenttibial shaft fractures. J Pediatr Orthop. 2006;26:164-170.
4. Al-Sayyad MJ. Taylor spatial frame in the treatment of neglected fractures. J ChildOrthop. 2011;5:135-141.
5. Al-Sayyad MJ. Taylor spatial frame in the treatment of upper extremity conditions. JPediatr Orthop. 2012;32:169-178.
6. Blondel B, Launay F, Glard Y, Jacopin S, Jouve J, Bollini G. Limb lengthening anddeformity correction in children using hexapodal external fixation: preliminaryresults for 36 cases. Orthop Traumatol Surg Res. 2009;95:425-430.
7. Blondel B, Launay F, Glard Y, Jacopin S, Jouve JL, Bollini G. Hexapodal externalfixation in the management of children tibial fractures. J Pediatr Orthop B.2010;19:487-491.
8. Docquier PL, Rodriguez D, Mousny M. Three-dimensional correction of complexleg deformities using a software assisted external fixator. Acta Orthop Belg.2008;74:816-822.
9. Eidelman M, Bialik V, Katzman A. Correction of deformities in children using the Taylor Spatial Frame. J Pediatr Orthop B. 2006;15:387-395.
10. Eidelman M, Katzman A. Treatment of complex foot deformities in children with the taylor spatial frame. Orthopedics. 2008;31(10).
11. Eidelman M, Zaidman M, Katzman A. Treatment of posttraumatic deformities inchildren and adolescents using the Taylor Spatial Frame. Orthopedics. 2010;33:253-256.
12. Eidelman M, Katzman A, Zaidman M, Keren Y. Deformity correction usingsupramalleolar gigli saw osteotomy and Taylor spatial frame: how to perform thisosteotomy safely? J Pediatr Orthop B. 2011;20:318-322.
13. Eidelman M, Katzman A. Treatment of arthrogrypotic foot deformities with the TaylorSpatial Frame. J Pediatr Orthop. 2011;31:429-434.
14. Eidelman M, Keren Y, Katzman A. Correction of residual clubfoot deformities inolder children using the Taylor spatial butt frame and midfoot Gigli saw osteotomy. JPediatr Orthop. 2012;32:527-533.
15. Elbatrawy Y, Fayed M. Deformity correction with an external fixator: ease of use andaccuracy? Orthopedics. 2009;32:82.
16. Fadel M, Hosny G. The Taylor spatial frame for deformity correction in the lowerlimbs. Int Orthop. 2005;29:125-129.
17. Feldman DS, Madan SS, Koval KJ, van Bosse HJ, Bazzi J, Lehman WB. Correctionof tibia vara with six-axis deformity analysis and the Taylor Spatial Frame. J PediatrOrthop. 2003;23:387-391.
18. Feldman DS, Shin SS, Madan S, Koval KJ. Correction of tibial malunion andnonunion with six-axis analysis deformity correction using the Taylor Spatial Frame. JOrthop Trauma. 2003;17:549-554.
19. Feldman DS, Madan SS, Ruchelsman DE, Sala DA, Lehman WB. Accuracy ofcorrection of tibia vara: acute versus gradual correction. J Pediatr Orthop.2006;26:794-798.
20. Floerkemeier T, Stukenborg-Colsman C, Windhagen H, Waizy H. Correction ofsevere foot deformities using the Taylor spatial frame. Foot Ankle Int. 2011;32:176-182.
21. Harbacheuski R, Fragomen AT, Rozbruch SR. Does lengthening and then plating(LAP) shorten duration of external fixation? Clin Orthop Relat Res. 2012;470:1771-1781.
22. Hassan A, Letts M. The management of the neglected congenital foot deformity inthe older child with the Taylor spatial frame. J Pediatr Orthop. 2012;32:85-92.
23. Henderson DJ, Barron E, Hadland Y, Sharma HK. Functional outcomes after tibialshaft fractures treated using the Taylor spatial frame. J Orthop Trauma. 2015;29:e54-59.
24. Iobst C. Limb lengthening combined with deformity correction in children with theTaylor Spatial Frame. J Pediatr Orthop B. 2010;19:529-534.
25. Khunda A, Al-Maiyah M, Eardley WGP. The management of tibial fracture nonunionusing the Taylor Spatial Frame. J Orthop. 2016;13:360-363.
26. Kristiansen LP, Steen H, Reikeras O. No difference in tibial lengthening index byuse of Taylor Spatial Frame or Ilizarov external fixator. Acta Orthop. 2006;77:772-777.
27. Lahoti O, Findlay I, Shetty S, Abhishetty N. Intentional deformation and closure ofsoft tissue defect in open tibial fractures with a taylor spatial frame--a simpletechnique. J Orthop Trauma. 2013;27:451-456.
28. Li Y, Spencer SA, Hedequist D. Proximal tibial osteotomy and Taylor Spatial Frameapplication for correction of tibia vara in morbidly obese adolescents. J PediatrOrthop. 2013;33:276-281.
29. Marangoz S, Feldman DS, Sala DA, Hyman JE, Vitale MG. Femoral deformitycorrection in children and young adults using Taylor Spatial Frame. Clin Orthop RelatRes. 2008;466:3018-3024.
30. Menakaya C, Rigby A, Hadland Y, Barron E, Sharma H. Fracture healing followinghigh energy tibial trauma: Ilizarov versus Taylor Spatial Frame. Ann R Coll Surg Engl.2014;96:106-110.
31. Nakase T, Kitano M, Kawai H, et al. Distraction osteogenesis for correction ofthree-dimensional deformities with shortening of lower limbs by Taylor SpatialFrame. Arch Orthop Trauma Surg. 2009;129:1197-1201.
32. Naqui SZ, Thiryayi W, Foster A, Tselentakis G, Evans M, Day JB. Correction ofsimple and complex pediatric deformities using the Taylor-Spatial Frame. J PediatrOrthop. 2008;28:640-647.
33. Robinson PM, Papanna MC, Somanchi BV, Khan SA. High tibial osteotomy inmedial compartment osteoarthritis and varus deformity using the Taylor spatialframe: early results. Strategies Trauma Limb Reconstr. 2011;6:137-145.
34. Rozbruch SR, Segal K, Ilizarov S, Fragomen AT, Ilizarov G. Does the Taylor SpatialFrame Accurately Correct Tibial Deformities? Clin Orthop Relat Res. 2010;468:1352-1361.
35. Sachs O, Katzman A, Abu-Johar E, Eidelman M. Treatment of Adolescent BlountDisease Using Taylor Spatial Frame With and Without Fibular Osteotomy: Is There anyDifference? J Pediatr Orthop. 2015;35:501-506.
36. Sala F, Thabet AM, Castelli F, et al. Bone transport for postinfectious segmentaltibial bone defects with a combined ilizarov/taylor spatial frame technique. J OrthopTrauma. 2011;25:162-168.
37. Sala F, Elbatrawy Y, Thabet AM, Zayed M, Capitani D. Taylor spatial frame fixationin patients with multiple traumatic injuries: study of 57 long-bone fractures. J OrthopTrauma. 2013;27:442-450.
38. Sluga M, Pfeiffer M, Kotz R, Nehrer S. Lower limb deformities in children: two-stagecorrection using the Taylor spatial frame. J Pediatr Orthop B. 2003;12:123-128.
39. Sokucu S, Karakoyun O, Arikan Y, Kucukkaya M, Kabukcuoglu Y. Efficacy of theTaylor spatial frame in the treatment of deformities around the knee. Acta OrthopTraumatol Turc. 2013;47:86-90.
40. Tafazal S, Madan SS, Ali F, et al. Management of paediatric tibial fractures usingtwo types of circular external fixator: Taylor spatial frame and Ilizarov circular fixator.J Child Orthop. 2014;8:273-279.
41. Thiryayi WA, Naqui Z, Khan SA. Use of the Taylor Spatial Frame in CompressionArthrodesis of the Ankle: A Study of 10 Cases. J Foot Ankle Surg. 2010;49:182-187.
42. Tsibidakis H, Kanellopoulos AD, Sakellariou VI, Soultanis K, Zoubos AB,Soucacos PN. The role of Taylor Spatial Frame for the treatment of acquired andcongenital tibial deformities in children. Acta Orthop Belg. 2014;80:419-425.
43. Viskontas DG, MacLeod MD, Sanders DW. High tibial osteotomy with use of theTaylor Spatial Frame external fixator for osteoarthritis of the knee. Can J Surg.2006;49:245-250.
44. Zenios M. The use of the taylor spatial frame for the treatment of unstable tibialfractures in children. J Orthop Trauma. 2013;27:563-568.
45. Donnan LT, Saleh M, Rigby AS. Acute correction of lower limb deformity andsimultaneous lengthening with a monolateral fixator. J Bone Joint Surg Br.2003;85:254-60